If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2X^2+33X+100=0
a = 2; b = 33; c = +100;
Δ = b2-4ac
Δ = 332-4·2·100
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-17}{2*2}=\frac{-50}{4} =-12+1/2 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+17}{2*2}=\frac{-16}{4} =-4 $
| 9−2x−9−16x=−14x−7−4x−11 | | x+35x=90 | | 4x+47=8x-13 | | 1/5(20p-15)=2p+4 | | 4+6t=28 | | 2(5n+9)=6(n-13) | | 5/k+7+1/k-8=27/k^2-k-56 | | Y=-8x^2+16x+2 | | b+96= 5 | | 2(y+1/4)=−2 | | x+6/7=32/9 | | 7x=60−3x | | b+96=5 | | 80=28+2f | | -2=−3x+10 | | -2=−3x+10. | | 2x^2+128x+0=x | | 4a(9a^2)=4a(2a) | | 4=y/3+4 | | f+17=2 | | z/3+12=15 | | (2x-45)=x+30 | | 3(z−2)=4z+1 | | 9+y/3=4 | | (2^-3x)-1/512=0 | | (7x-2)=(17x+6) | | 80000=x-(x•.06) | | 5+132+t=43243582095820 | | 3(f-5)=-15 | | 2(x=8)=36 | | 4x-3+3x=40 | | 5x+1=12x−8 |